



## In-vivo anti bacterial activity of the novel series of quinazoline 2,3 dione derivatives

Sankari E<sup>1\*</sup>, Sandhiya V<sup>2</sup>

<sup>1</sup> Assistant professor, Department of pharmaceutical chemistry, C.L. Baid Metha College of pharmacy, Chennai, Tamil Nadu India

<sup>2</sup> Assistant professor, Department of pharmaceutics, C.L. Baid Metha College of pharmacy, Chennai, Tamil Nadu, India

### Abstract

**Aim and objective:** The aim and object of the study is to analyse the *invivo* antibacterial effect of synthesized compound on albino swiss mice

**Method:** The novel series of quinazoline 2, 3 dione derivatives were synthesized, from the synthesized compounds 5 derivatives were evaluated for *invivo* antibacterial activity with standard drug ciprofloxacin at 50mg/kg dose. The derivatives were analysed for acute toxicity test and *invivo* antibacterial test (mouse protective test as per the guidelines). The test were carried out for two bacterial Stains such as *S.aureus* and *E.coli*.

**Result:** From the synthesized compound the compound T6 and A6 shows higher level of antibacterial activity and its was estimated that at a dose of 50mg/kg b.w the synthesized compound (T5, T6, A1,A5 and A6) shows no sign of toxicity so safety level was predicted at 50mg dose at the same time the compound T6 and A6 shows higher percentage of protection against *S. aureus* and *E.coli* with reference of standard drug ciprofloxacin at a dose of 25mg.

**Conclusion:** The above data reveals that the synthesized compound has antibacterial activity in a dose of 50mg. Compared to other derivatives compound T6 and A6 shows most prominent role in protection activity which means due to substitution of fluro and chloro compounds on the derivatives. In future if further derivatives were synthesized using this novel series it would be a most promising and lead molecule for many disease.

**Keywords:** quinaxaline 2, 3 dione derivatives, *invivo* antibacterial study, against *s.aureus* and *e.coli*,acute toxicity study, ir study

### Introduction

The aim of the present study is to synthesis and screening the anti-microbial activity of novel series of quinoxaline 2, 3 Dione derivatives containing a 2-azetidinone (A1-A6) nucleus. Among the various classes of nitrogen-containing heterocyclic compounds, quinoxalines display a broad spectrum of biological activities. It known to possess antibacterial, antifungal, and cyto-toxic activities <sup>[1]</sup>. The chemistry of  $\beta$ -lactams has taken an important place in organic chemistry since the discovery of Penicillin by Sir Alexander Fleming in 1928 and shortly thereafter Cephalosporin which were both used as successful antibiotics. Even now the research in this area is stimulated because of development of bacterial resistance to widely used antibiotics of this type. There is a need for functionalized  $\beta$ -lactams or for new active principles in  $\beta$ -lactam series <sup>[2]</sup>.

Azetidinones, commonly known as  $\beta$ -lactams are well known heterocyclic compounds among the organic and medicinal chemists. The activity of the famous antibiotics such as penicillins, cephalosporins, and carbapenems are attribute to the presence of 2-azetidinone ring in them. Azetidinones are very important class of compounds possessing wide range of biological activities such as antibacterial <sup>[3]</sup>, anti-inflammatory <sup>[4]</sup>, antihyperlipidemic <sup>[5]</sup>, CNS activity <sup>[6]</sup>, trypsin inhibitory <sup>[7]</sup>, human leukocyte elastase inhibitory <sup>[8]</sup>, anti hyperglycemic <sup>[9]</sup>, vasopressin v1a antagonist <sup>[10]</sup>, anticancer activity <sup>[11]</sup>, antimicrobial <sup>[12]</sup>, pesticide <sup>[13]</sup>, antitumor <sup>[14]</sup>, anti tubercular <sup>[15]</sup>, cytotoxic <sup>[16]</sup>, enzyme inhibitors <sup>[17]</sup>, elastase inhibitors <sup>[18]</sup>, and cholesterol

absorption inhibitors <sup>[19]</sup>.

### Materials and Methods

General procedure for N1-substituted arylidene/heteroarylidene-4-(3-oxo3, 4dihydroquinoxaline-2(1H)-ylidenemino) benzene sulfonamide. A mixture of Schiff base sulphanilamide (0.01mol) and five different aromatic aldehydes (0.01 mol) were taken in separate RBF and reflux in ethanol for three h <sup>[20]</sup>. The reaction mixture was then poured in to crushed ice and the separated solid wash filtered and re-crystallizes using absolute alcohol.

### Synthesis of 4-Thiazolidinones (T<sub>1</sub>-T<sub>6</sub>)

The above synthesized different Schiff bases (0.01 moles), S<sub>1</sub>-S<sub>6</sub> and thioglycollic acid (0.01moles) in 25ml dioxin were taken in separate round bottom flasks <sup>[21]</sup>. To these mixtures a pinch of anhydrous zinc chloride was added and refluxed for 8 hours. The reaction mixtures were cooled, poured into crushed ice, filtered and recrystallized using absolute alcohol.

### Synthesis of 2-azetidinones (A1-A6)

0.01 mol of Schiff bases (S1-S6) were taken separately and (0.01 mol) of triethylamine in 25 ml dry dioxan was added to them to form a solution. To these solutions chloroacetate chloride was added drop wise with continuous stirring in cold for 30 min and refluxed for 3 h <sup>[22]</sup>. The contents were then poured into crushed ice, filtered, and recrystallized using absolute alcohol. The following experimental methods were used for the characterization of the synthesized compounds. Melting points of the synthesized compounds were determined in open capillary tubes (Thermonilic

melting point apparatus) and were uncorrected. Thin layer chromatography was performed using precoated aluminium plates coated with silica gel GF254 [E. merk] of 0.25mm thickness, dichloromethane and methanol as the solvent system and UV chamber as the visualizing agent. An IR spectrum was recorded on ABB BOMEM FTIR spectrometer using KBr pellets [23].

### **Evaluation of *In Vivo* Antimicrobial Activity**

All the animal experimentation was performed according to the protocols and recommendation of the Institutional animal ethics committee.

**IAEC /XXX/06/CLBNCP/2010 dated 22.09.2010.**

### **Evaluation of Acute Oral Toxicity**

#### **Experimental Protocol (Acute toxic class method in mice)**

In the present study the acute oral toxicity of the synthesized compounds (T5, T6, A1, A5, A6, T1, A5, and A6) were performed by acute toxic class method. In this methods the toxicity of the synthesized compounds were tested using a step wise procedure, each step using 3 mice of a single size. The mice were fasted prior to dosing (food but not water should be with held) for 3-4 hrs. Following the period of fasting the animal should be weighed and the synthesized compounds were administered orally at a dose of 2000mg/kg body weight [24]. Animals were observed for first 24 hrs with special attention given during the first 4 hrs and daily thereafter, for total of 14 days. As the animals died, the dose of 300 mg/kg was administered orally and animals were observed carefully. At this dose level also the mortality was observed so the oral dose of 50mg/kg was administered to the animals and monitored them for 14 days as no mortality was observed at this level so based upon OECD guideline 423 a series of doses 50 and 100 mg/kg body weight were selected for the further pharmacological evaluation [25]. This test procedure with a starting dose of 2000mg/kg body weight as per OECD-423 Guideline was shown as follows.

### ***In Vivo* Anti-Bacterial Activity (Mouse Protection Test)**

#### **Experimental protocol**

The *in vivo* activity of synthesized compounds against systemic infection in mice was determined four week old male swiss albino mice weighing 18 to 22 gm were used for systemic infection model.

They were maintained in animal rooms kept at  $23\pm2^\circ\text{C}$  with  $55\% \pm 20\%$  relative humidity. Test organisms for infection were cultured in Hinton nutrient agar medium at  $37^\circ\text{C}$  for 18 hrs. For use as inoculate, *staphylococcus aureus*, *E.coli* was suspended in 0.9% saline solution containing 5% gastric mucin [26]. Mice were used in groups of six for each inoculum and were challenged intraperitoneally with a single 0.5 ml portion of the bacterial suspension, corresponding to an inoculum range of 10 to 100 times the minimal lethal dose of bacteria. Two dose levels were used for each synthesized drugs, depending on the *invitro* antimicrobial activity of the compound (i.e.) 50 and 100 mg/ $\mu\text{g}$ . Synthesized compounds at various dose regimens were

orally administered to mice twice, at 1 and 4<sup>th</sup> hr. of past infection. Synthesized compounds were suspended in 1% carboxy methyl cellulose. Mortality was recorded for 7 days, and the median effective dose needed to protect 50% of the mice (ED50) was calculated by interpolation among survival mice (% protection) in each group after a week. They express the total dose of compounds (mg/kg) required to protect 50% of the mice from an experimentally induced systemic infection of the indicated organism. The challenge inoculum was sufficient to kill 100% of the untreated control mice, which died within 48 hr post infection.

## **Results and Discussion**

### **Synthesis**

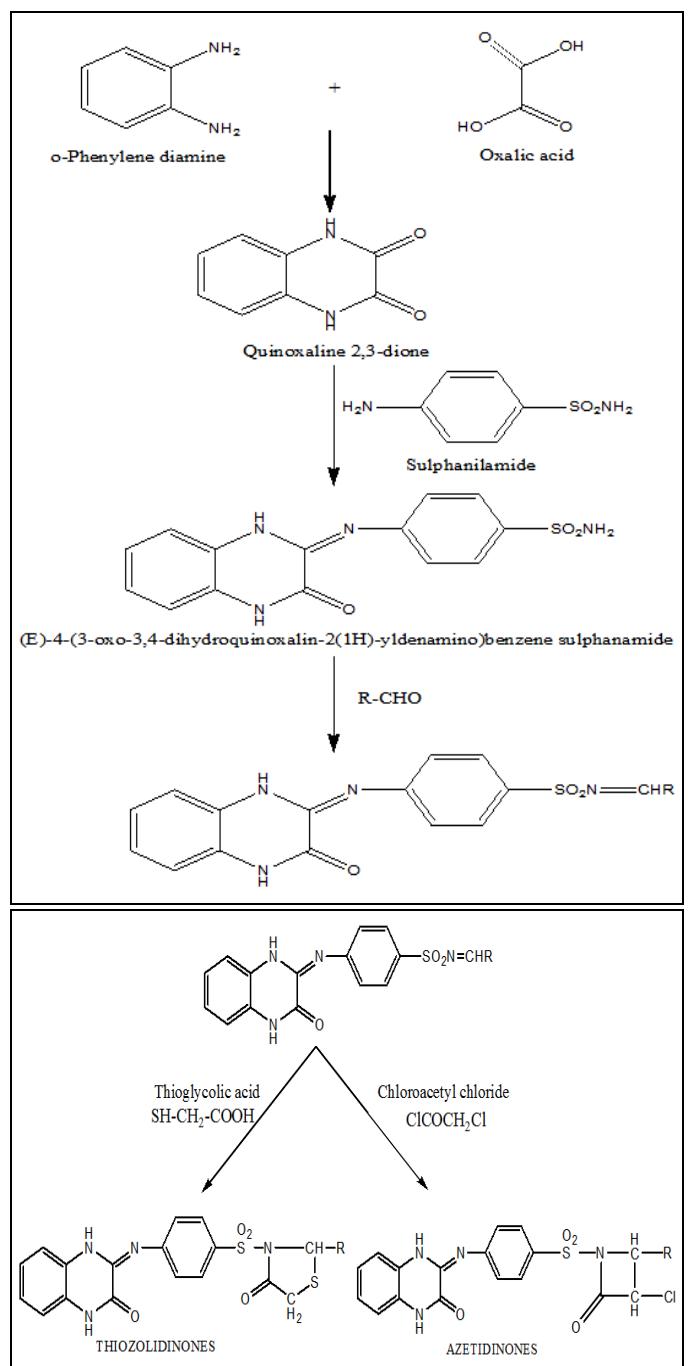
Two derivatives were synthesized from the novel series of quinazoline derivatives which was shown in fig 1

### **IR study**

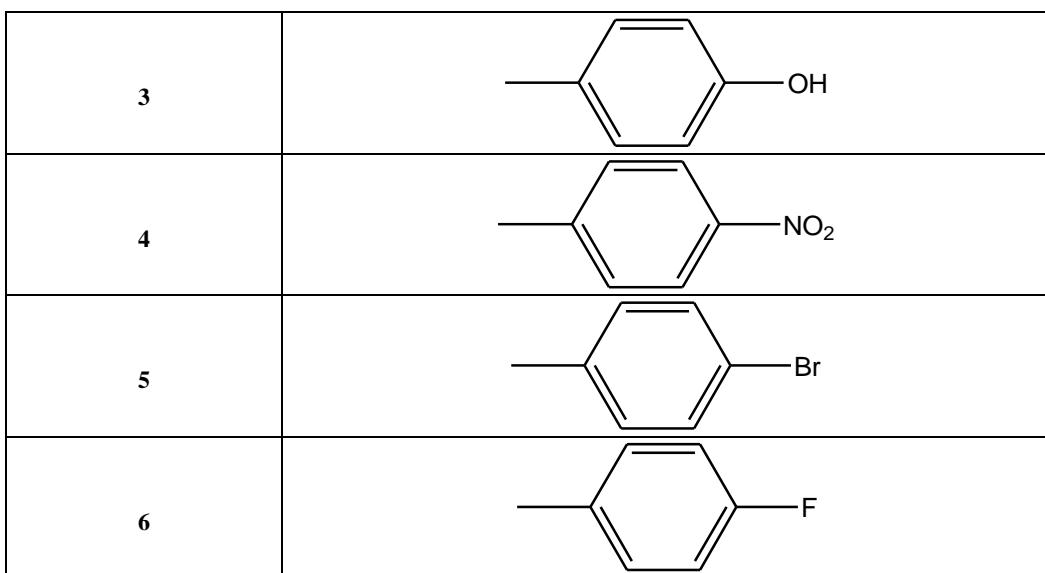
In general, IR spectra of compounds (A1-A6) showed absorption bands ranging around 1759–1764cm<sup>-1</sup> indicating the presence of C=O groups in their structure (C=O group is in the cyclic ring) and also the NH stretching vibrations appeared between 3373–3383 cm<sup>-1</sup>. The result were shown in fig 2-7.

### **Acute toxicity study**

Acute oral toxicity studies were performed according to the OECD guideline 423 method.


This method has been designed to evaluate the substance at the fixed doses and provides information both for hazard assessment and substance to be ranked for hazard classification purposes.

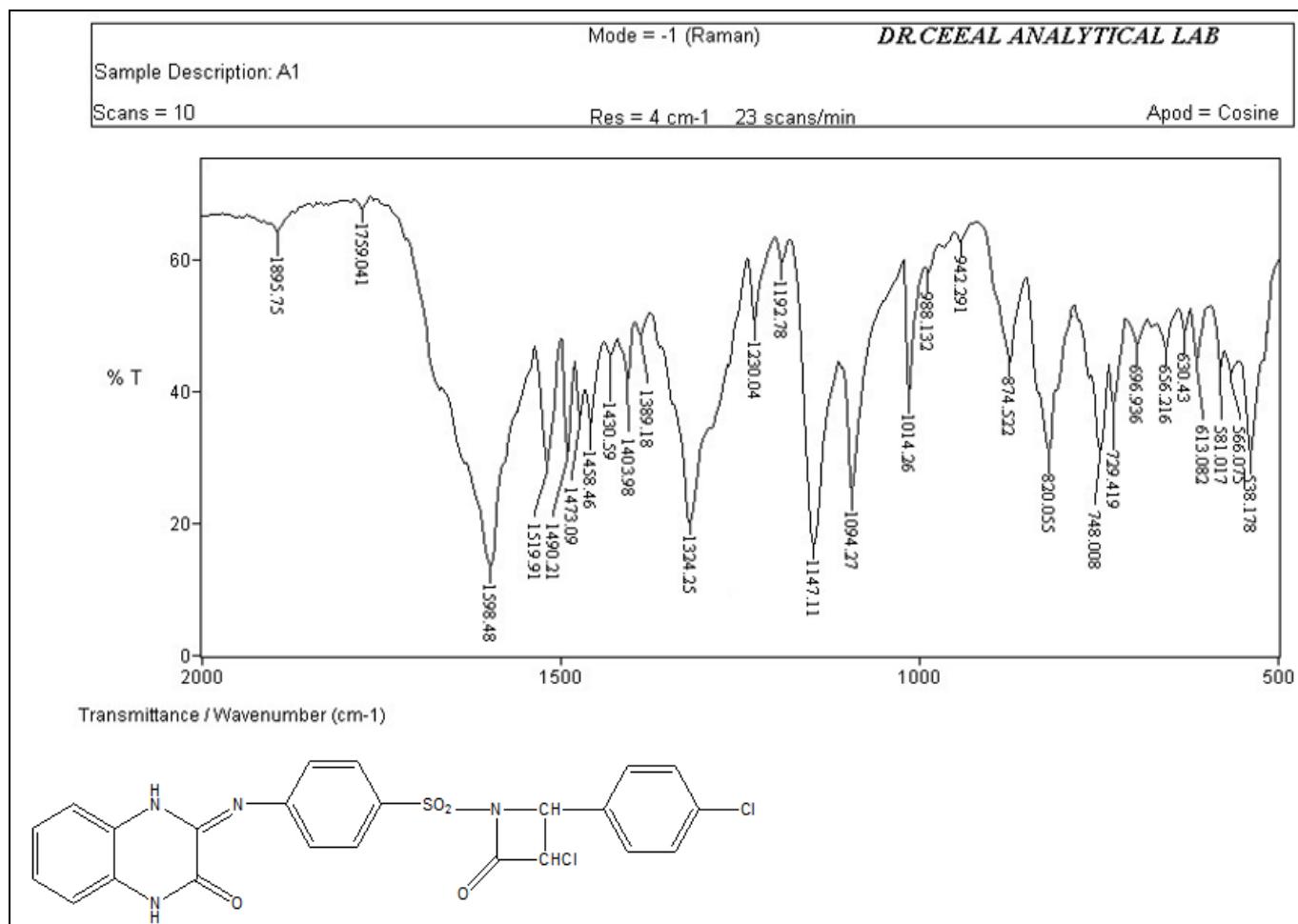
The synthesized compounds were administered initially at a starting dose of 2000 mg/kg b.w in 1% CMC (p.o) and observed 14 days mortality due to acute toxicity.


Careful observation were made at least twice a day for the effect on CNS, ANS, motor activity, salivation, skin colouration and other general signs of toxicity were also observed and recorded.

Since the mortality was observed at 2000mg/kg b.w. and 300 mg/kg b.w. the lower dose level of 50 mg/kg was selected.

Since no sign of toxicity observed at 50 mg/kg b.w. to the group of animals, the LD50 value of the title compounds(A1,A5,A6,,T5 and T6) expected to exceed 50 mg/kg b.w and represented as class 3 (50 mg/kg < LD50 < 300 mg/kg) From the toxicity studies the data revealed that all the synthesized compounds proved to be non-toxic at tested dose levels and well tolerated by the experimental animals as their LD50 cut off values >200 mg/kg b.w. the result was shown in table 1-2. From the synthesized derivatives, compounds A6 and T6 shows higher antibacterial activity against *S. aureus* and *E.coli* compare to other compounds which may be due to presence of chloro and fluoro substitution in the derivatives. The result was expressed in fig 8-9. Schematic representation for the synthesized compound

**Fig 1:** Scheme for the synthesis of compounds**Table 1:** Details of The-R Represented In the Synthetic Scheme


| Compounds | -R |
|-----------|----|
| 1         |    |
| 2         |    |



IR spectra were recorded on ABB BOMEM FTIR Spectrometer using potassium bromide pellets.

**Table 2:** Infra-Red Spectral Data of Synthesized Compounds.

| Compounds | Ar- CH Stretch | CH(S) | C=O       | C=N  | C-S | C-N  | CH(b) | N-H  | C-Cl | Ar-OH | Ar-NO2 | Ar-Br | Ar-F |
|-----------|----------------|-------|-----------|------|-----|------|-------|------|------|-------|--------|-------|------|
| A1        | 3057           | 2865  | 1759 1598 | 1519 | -   | 1324 | 1403  | 3373 | 748  | -     | -      | -     | -    |
| A2        | 3057           | 2865  | 1759 1598 | 1519 | -   | 1324 | 1403  | 3373 | 748  | -     | -      | -     | -    |
| A3        | 3067           | 2853  | 1746 1621 | 1516 | -   | 1319 | 1406  | 3379 | 758  | 3397  | -      | -     | -    |
| A4        | 3087           | 2840  | 1732 1712 | 1518 | -   | 1349 | 1413  | 3378 | 753  | -     | 1540   | -     | -    |
| A5        | 3086           | 2874  | 1711 1656 | 1510 | -   | 1326 | 1408  | 3348 | 745  | -     | -      | 548   | -    |
| A6        | 3067           | 2865  | 1764 1602 | 1519 | -   | 1317 | 1415  | 3383 | 746  | -     | -      | -     | 1285 |



**Fig 2:** IR spectrum of compound A1

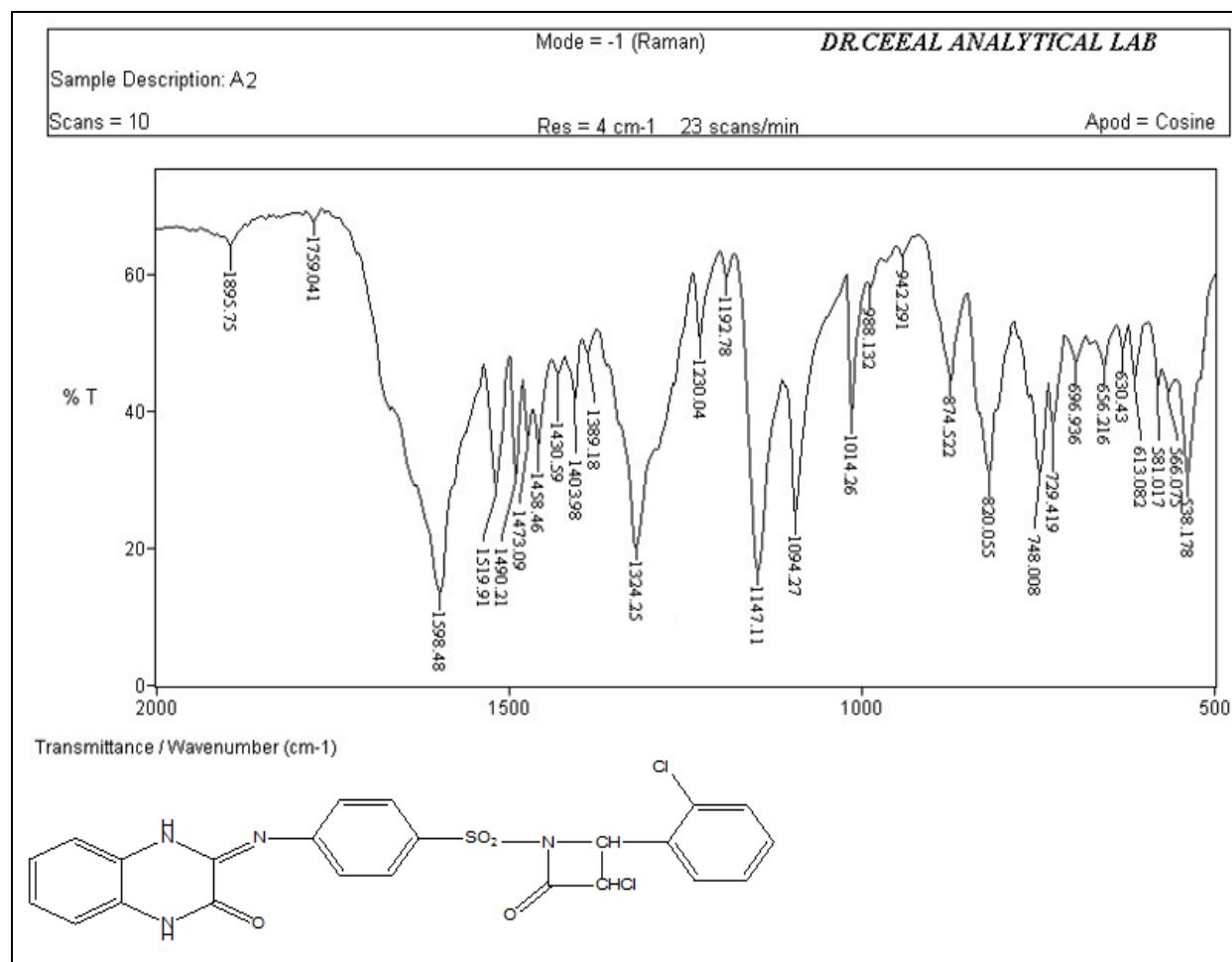



Fig 3: IR spectrum of compound A2

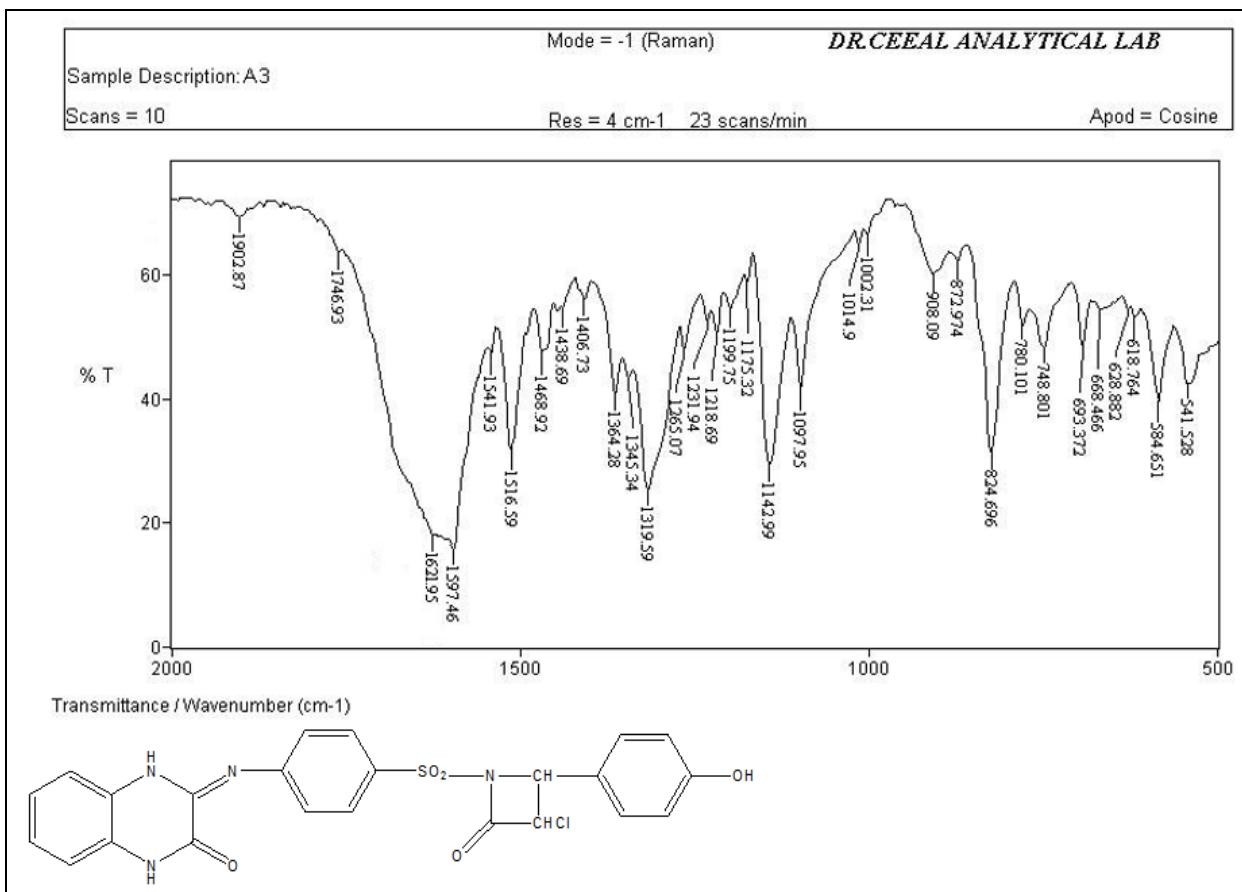



Fig 4: IR spectrum of compound A3

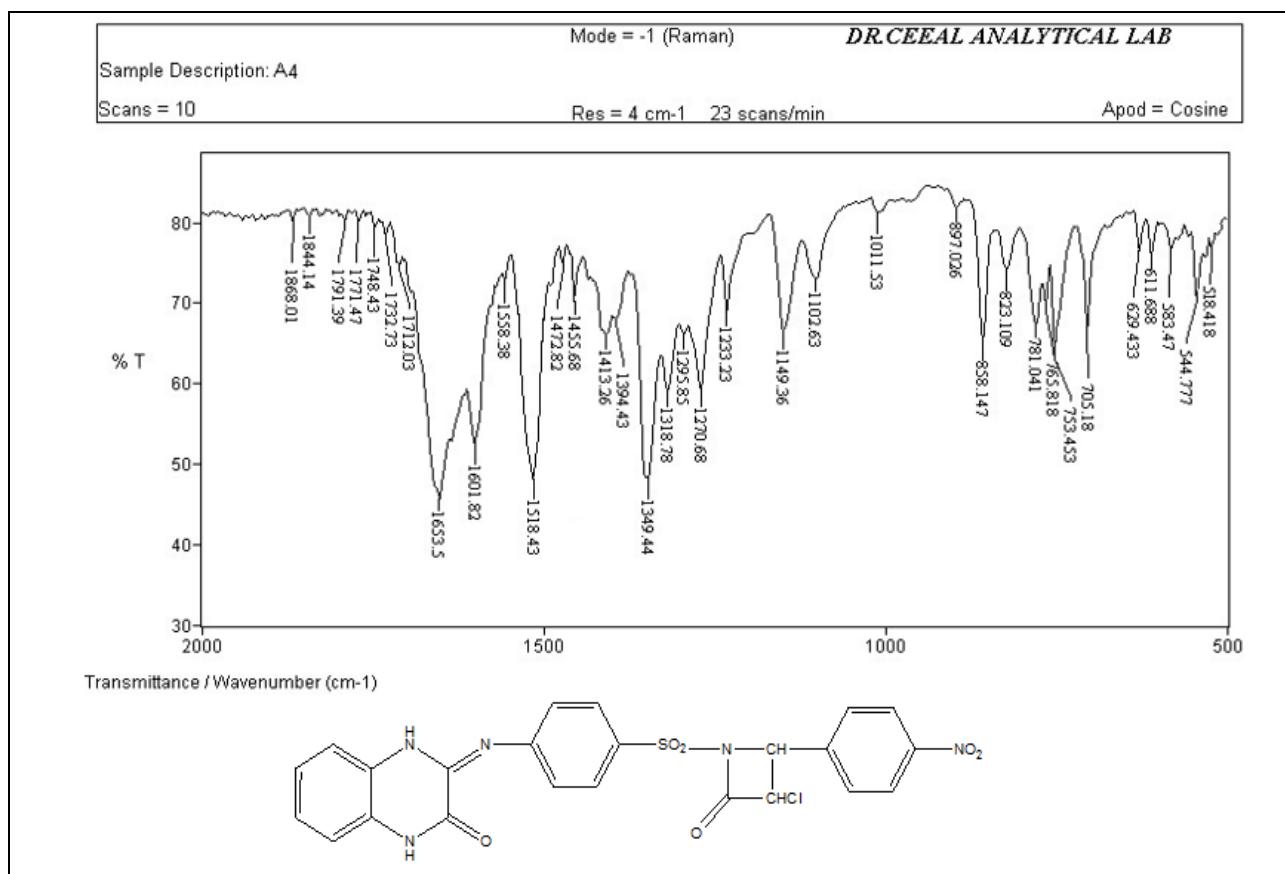
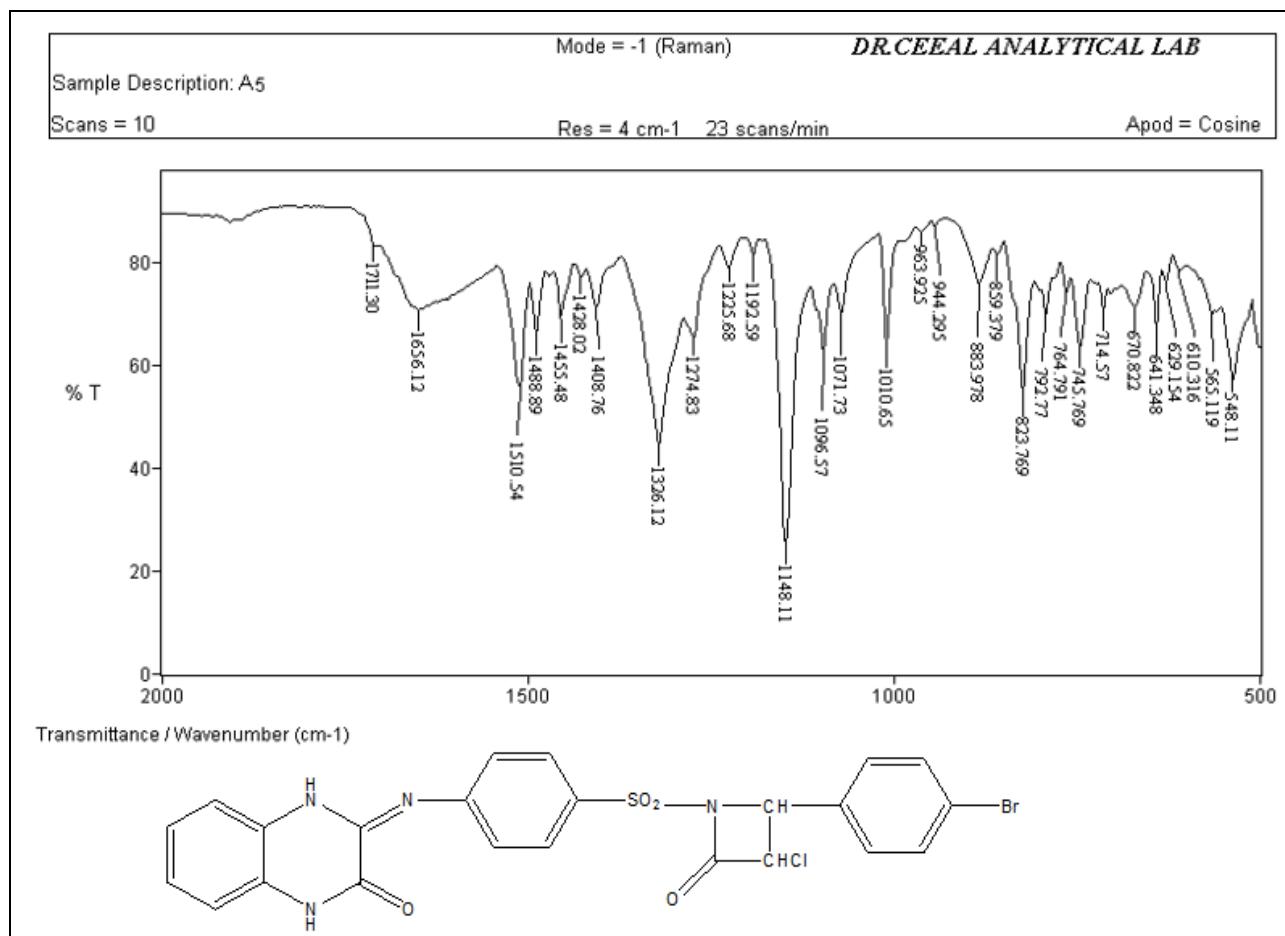
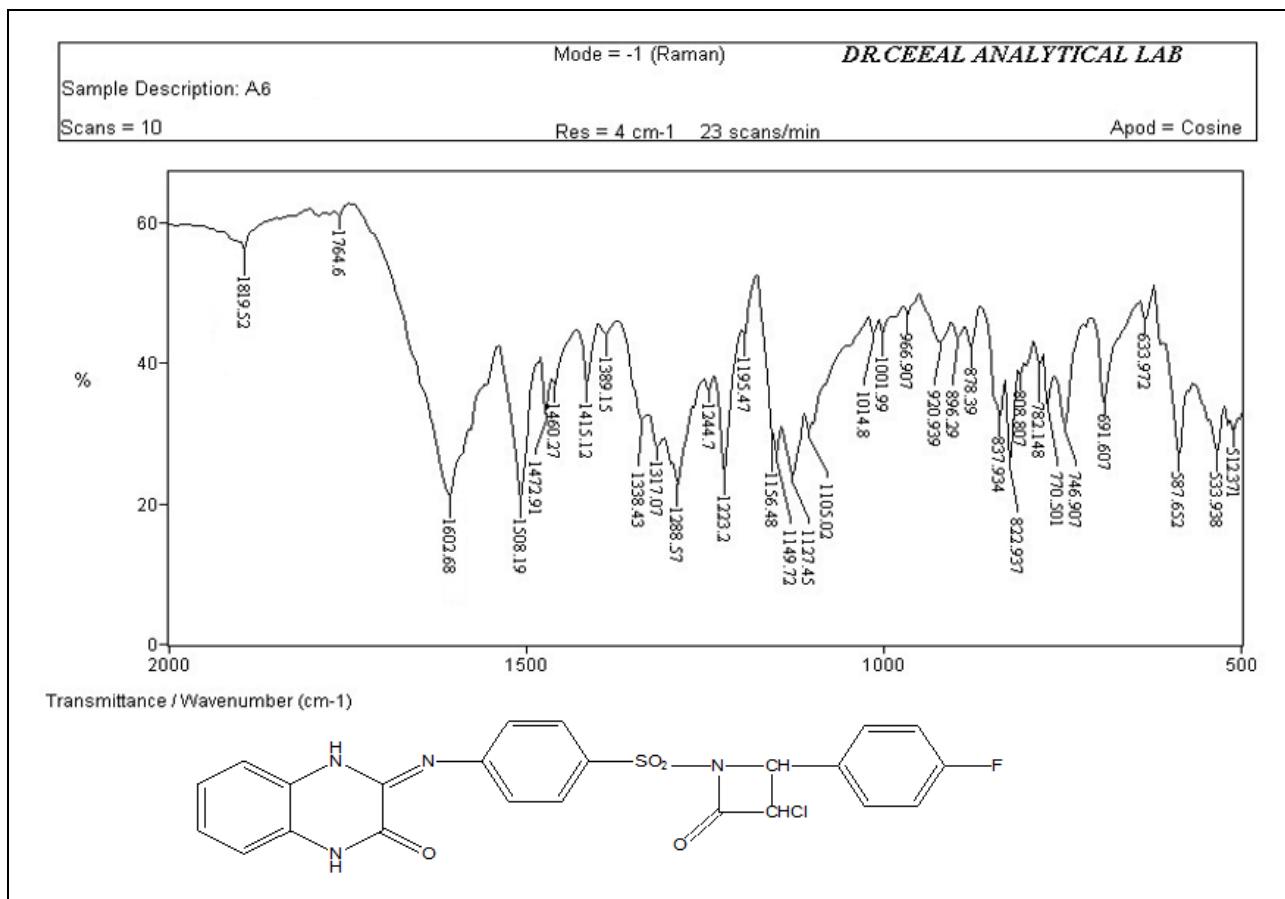
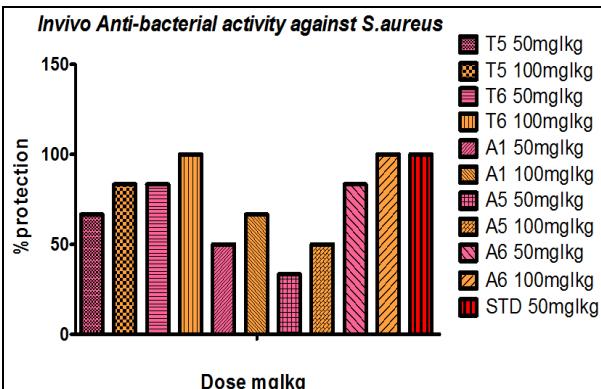
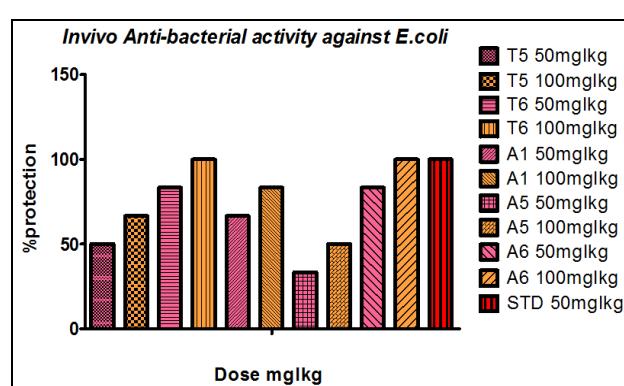



Fig 5: IR spectrum of compound A4



Fig 6: IR spectrum of compound A5

**Fig 7:** IR spectrum of compound A6**Table 3:** Invivo Results of the Synthesized Compounds against *Staphylococcus aureus*

| S.no | Compounds      | Dose     | Percentage Protection | Ed <sub>50</sub> mg/kg |
|------|----------------|----------|-----------------------|------------------------|
| 1    | T <sub>5</sub> | 50 mg/kg | 66.6%                 | 37mg/kg                |
|      |                | 100mg/kg | 83.3%                 |                        |
| 2    | T <sub>6</sub> | 50 mg/kg | 83.3 %                | 30mg /kg               |
|      |                | 100mg/kg | 100 %                 |                        |
| 3    | A <sub>1</sub> | 50 mg/kg | 50.0%                 | 50mg/kg                |
|      |                | 100mg/kg | 66.6%                 |                        |
| 4    | A <sub>5</sub> | 50 mg/kg | 33.3%                 | 100mg/kg               |
|      |                | 100mg/kg | 50.0%                 |                        |
| 5    | A <sub>6</sub> | 50 mg/kg | 83.3 %                | 30mg /kg               |
|      |                | 100mg/kg | 100 %                 |                        |
| Std. | Ciprofloxacin  | 50mg/kg  | 100%                  | 25mg/kg                |

**Fig 8:** In-vivo antibacterial activity of *S. aureus***Table 4:** In Vivo Results of the Synthesized Compounds against *Escherichia coli*

| S.no | Compounds      | Dose     | Percentage Protection | ED <sub>50</sub> mg/kg |
|------|----------------|----------|-----------------------|------------------------|
| 1    | T <sub>5</sub> | 50 mg/kg | 50.0%                 | 50mg/kg                |
|      |                | 100mg/kg | 66.6%                 |                        |
| 2    | T <sub>6</sub> | 50 mg/kg | 83.3 %                | 30mg /kg               |
|      |                | 100mg/kg | 100 %                 |                        |
| 3    | A <sub>1</sub> | 50 mg/kg | 66.6%                 | 37mg/kg                |
|      |                | 100mg/kg | 83.3%                 |                        |
| 4    | A <sub>5</sub> | 50 mg/kg | 33.3%                 | 100mg/kg               |
|      |                | 100mg/kg | 50.0%                 |                        |
| 5    | A <sub>6</sub> | 50 mg/kg | 83.3 %                | 30mg /kg               |
|      |                | 100mg/kg | 100 %                 |                        |
| Std. | Ciprofloxacin  | 100mg/kg | 100%                  | 25mg/kg                |

**Fig 9:** In vivo antibacterial activity of *E. coli*

## Conclusion

The novel series of quinaxaline 2, 3 Dione derivatives were synthesized and analysed for *invivo* antibacterial activity. From the synthesized compound the two most promising derivatives such as A6 and T6 shows higher level of protection against *S. aureus* and *E. coli*. Respectively with standard drug ciprofloxacin. Even more number of derivatives can be synthesized from the same compound and which may have a potency to cure many Disease's. But in future lot of research should be needed to prove the various activity of the synthesized derivatives.

## Acknowledgement

The authors are very grateful to thank the supporters for end up with successful work

## Conflict of Interest

No conflict of interest from authors

## References

- Dell A, William D H, Morris HR, Smith G A, Freency J *et al.* Invitro antitubercular and antimicrobial activities of 1-substituted quinoxaline-2,3(1H,4H)-diones. American Chemical Society. 1975; 97:2497.
- Brabandt WV, Dejaegher Y, Kimpe ND. New reactions of functionalized  $\beta$ -lactams. Pure and Applied Chemistry. 2005; 77(12):2061-2071.
- Chavan AA, Pai NR. Synthesis and Biological Activity of N-Substituted-3-chloro-2-azetidinones. Molecules. 2007; 12(11):2467-2477.
- Kumar A, Rajput CS. Synthesis and anti-inflammatory activity of newer quinazolin-4-one derivatives. European journal of medicinal chemistry. 2009; 44:83-90.
- Leach CA, Deirdre MB. Lipoprotein-associated PLA2 inhibition — a novel, non-lipid lowering strategy for atherosclerosis therapy. II Farmaco. 2001; 56:45-50.
- Goel RK, Singh A, Naidu PS, Mahajan MP, Kulkarni SK *et al.* PASS-assisted search and evaluation of some as CNS active agents. Journal of Pharmacy and Pharmaceutical Sciences. 2005; 8:182-189.
- Bisacchi GS, Slusarchyk WA. Synthesis of potent and highly selective non guanidineazetidinone inhibitors of human tryptase. Bioorganic & Medicinal Chemistry Letters. 2004; 14:2227-2231.
- Stephane G, Moreno G, Georges D, Jacqueline M. Synthesis and evaluation of N1/C4-substituted  $\beta$ -lactams as PPE and HLE inhibitors. Bioorganic & Medicinal Chemistry. 2004; 12:129-138.
- Goel RK, Mahajan MP, Kulkarni SK. Evaluation of anti-hyperglycemic activity of some novel monocyclic betalactams. Journal of Pharmacy and Pharmaceutical Sciences. 2004; 7(1):80-83.
- Guillon CD, Koppel GA, Brownstein MJ. Azetidinones as vasopressin V1a antagonist. Bioorganic & Medicinal Chemistry. 2007; 15:2054-2080.
- Banik BK, Banik I, Becker FF. Stereocontrolled synthesis of anticancer  $\beta$ -lactams via the Staudinger reaction. Bioorganic & Medicinal Chemistry. 2005; 13:3611-3622.
- Patel KH and Mehta AG: Synthesis and antifungal activity of azetidinones and thiazolidinones derivative of 2-amino-6- (2-naphthalenyl) thiazolo [3, 2-d] thiadiazole, European Journal of Chemistry. 2006; 3(13):267-273.
- Madhu G, Jayaveera KN, Ravindranath LK, Santosh Kumar B, Nagarjuna Reddy P. Synthesis, Characterization and biological evaluation of novel quinoline linked 1,3,4-oxadiazoles possessing azetidin-2-one, thiazolidin-4-one and tetrazole moieties. International journal of chemtech research. 2013; 5(5):2381-2389.
- Veinberg G, Shestakova I, Vorona M, Kanepe I, Lukevics E. Synthesis of antitumor 6-alkylidene penicillanate sulfones and related 3-alkylidene-2-azetidinones. Bioorganic & Medicinal Chemistry Letters. 2004; 14(1):147-150.
- Narute AS, Khedekar PB, Bhusari KP. QSAR studies on 4-thiazolidinoes and 2-azetidinones bearing benzothiophene nucleus as potential anti-tubercular agents. Indian Journal of Chemistry. 2008; 47B:586-591.
- Veinberg G, Bokaldere R, Dikovskaya K, Vorona M, Kanepe I, Shestakova I *et al.* Synthesis of Cytotoxic 1,3,4-trisubstituted 2-azetidinones. Chemistry of Heterocyclic Compounds. 2003; 39(5):587-593.
- Beauve C, Bouchet M, Touillaux R, Fastrez J, Marchand-Brynaert J. Synthesis, Reactivity and Biochemical Evaluation of 1,3-Substituted Azetidin-2-ones as Enzyme Inhibitors. ChemInform, 2000, 31(4).
- Gerard S, Dive G, Clamot B, Touillaux R, Marchand-Brynaert J. Synthesis, hydrolysis, biochemical and theoretical evaluation of 1,4-bis (alkoxycarbonyl) azetidin-2-ones as potential elastase inhibitors. Tetrahedron. 2002; 58:2423-2433.
- Wang Y, Zhang H, Huang W, Kong J, Zhou J, Zhang B. 2-Azetidinone derivatives: Design, synthesis and evaluation of cholesterol absorption inhibitors. European journal of medicinal chemistry. 2009; 44(4):1638-1643.
- Pfister. Sulfaquinoxaline II A new synthesis of 2-aminoquinoxaline Journal of the American Chemical Society. 1951; 73:4955.
- Dailey S, Feast JW, Peace RJ, Saga RC. A novel threecomponent reaction for the synthesis of N-cyclohexyl-3-arylquinoxaline-2-amines. Medicinal Chemistry Communications. 2002; 8:862.
- Harsanyi, Gonezi, Horvath, Korbonitis. Synthesis of 1,2,4,5-Tetrazino(1,6-a:4,3-a)diquinoxaline. Chemische Berichte. 1972; 105:805.
- Bhargava PN, Chaurasia MR. Synthesis and antimycobacterial activity of a novel series of isonicotinylhydrazide derivatives. Journal of Pharmaceutical Sciences. 1969; 58:896-898.
- Reynolds JEF, Matrindale."The extra pharmacopoeia", the pharmaceutical press, London, 23<sup>rd</sup> edition, 1955, 528.
- Anantha narayan R, Paniker JCK." Text book of microbiology".5<sup>th</sup> edn.chennai; orient longon Ltd, 1987, 620-621.
- Kharidia SP, Raval BK, Trivedi JJ. Derivatives of 5-diethylaminoacetamino-2arylimino-3-aryl-4-thiazolidinone Journal of the American Chemical Society. 1962; 39:43.